Interaction between Diethyldithiocarbamate and Cu(II) on Gold in Non-Cyanide Wastewater

نویسندگان

  • Nguyen Hoàng Ly
  • Thanh Danh Nguyen
  • Kyung-Duk Zoh
  • Sang Woo Joo
چکیده

A surface-enhanced Raman scattering (SERS) detection method for environmental copper ions (Cu2+) was developed according to the vibrational spectral change of diethyldithiocarbamate (DDTC) on gold nanoparticles (AuNPs). The ultraviolet-visible (UV-Vis) absorption spectra indicated that DDTC formed a complex with Cu2+, showing a prominent peak at ~450 nm. We found Raman spectral changes in DDTC from ~1490 cm-1 to ~1504 cm-1 on AuNPs at a high concentration of Cu2+ above 1 μM. The other ions of Zn2+, Pb2+, Ni2+, NH₄⁺, Mn2+, Mg2+, K⁺, Hg2+, Fe2+, Fe3+, Cr3+, Co2+, Cd2+, and Ca2+ did not produce such spectral changes, even after they reacted with DDTC. The electroplating industrial wastewater samples were tested under the interference of highly concentrated ions of Fe3+, Ni2+, and Zn2+. The Raman spectroscopy-based quantification of Cu2+ ions was able to be achieved for the wastewater after treatment with alkaline chlorination, whereas the cyanide-containing water did not show any spectral changes, due to the complexation of the cyanide with the Cu2+ ions. A micromolar range detection limit of Cu2+ ions could be achieved by analyzing the Raman spectra of DDTC in the cyanide-removed water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and Adsorption Isotherms Study of Cyanide Removal from Gold Processing Wastewater Using Natural and Impregnated Zeolites

The extraction of gold involves using cyanide which has the potential to impact the environment. Many studies have been done to reduce the environmental effects of cyanide. In this research, the cyanide adsorption on zeolite from gold processing plant tailing dam wastewater was investigated. Results indicated that the pH of the solution, contact time duration, temperature, zeolite amo...

متن کامل

Adsorption of Copper(II) from an Wastewater Effluent of Electroplating Industry by Poly(ethyleneimine)-Functionalized Silica

The poly(ethyleneimine)-functionalized silica has been developed successfully as an effective adsorbent for the adsorption removal of Cu(II) ions from electroplating wastewater. The influences of pH, contact time and initial concentration of Cu(II) ions on the adsorption capacity and the effect of adsorbent dosage on the removal efficiency of Cu(II) ions from electroplatin...

متن کامل

Escherichia coli expresses a copper- and zinc-containing superoxide dismutase.

A mutant of Escherichia coli, unable to produce manganese- or iron-containing superoxide dismutase (SOD), was found to contain modest levels of an SOD that was judged to be a copper- and zinc-containing SOD on the basis of inhibition by cyanide and inactivation by either H2O2 or diethyldithiocarbamate. Moreover, the diethyldithiocarbamate-inactivated enzyme could be reactivated with Cu(II), and...

متن کامل

Negative effects of cyanide on health and its removal options from industrial wastewater

Water resource scarcity, population growth, pollution of surface and groundwater by discharging toxic wastewater and subsequent diseases may raise the necessity of reusing and treatment of wastewater. Cyanide is one of the toxic materials which can be found in some industrial wastewaters. Strict laws set by international bodies have forced industries to work on developing efficient cyanide remo...

متن کامل

Removal of Chelated Copper by TiO2 Photocatalysis: Synergetic Mechanism Between Cu (II) and Organic Ligands

UV/TiO2 photocatalysis of chelated copper in aqueous solutions has been performed starting from Cu(II)-tartaric acid, Cu(II)-citric acid, Cu(II)-EDTA and Cu(II)-DTPA,in the presence of oxygen and at acidic pH. The photocatalytic reaction obeys first-order kinetic equation. The influence of Cu(II) on photocatalytic oxidation of organic ligands and how the various organics will affe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017